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 Generative AI: AI where DL models that learn inherent structure of input data and generate new data. 

 Applications: Text content creation, Image content creation via captioning, Language translation, Video 

Generation, Music Generation and so many more. 

 Potential Application in Engineering Design 

- Unexplored in areas where core engineering is involved. 

- Harness generative AI to design objects with key physical properties (optimal aerodynamic performance, 

structural durability, easy manufacturability). 

GENERATIVE AI 

Image to image translation via   

Plug n‘ Play Diffusion by NVIDIA  

https://developer.nvidia.com/blog/generative-ai-research-empowers-creators-with-guided-image-structure-control/
https://developer.nvidia.com/blog/generative-ai-research-empowers-creators-with-guided-image-structure-control/
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 Generative AI based Product Development: Harness generative AI to come up with 

aerodynamically optimal starting geometries of car parts that are not available. 

 Easier adaptation of design variations: Faster prototyping and engineering assessment via 

physical simulations. 

 Automating Initial design:  Additional agility and cost-saving in the design and production 

pipeline. 

 

 

 

 

GENERATIVE AI BASED DESIGN 

Spoiler and Exhaust Manifold Geometries 

Aerodynamic Body  

(BMW M3 GTR Featured in NFS MW 2002) 
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 Topology Optimization: Optimizing material layout with the goal for maximizing an objective 

given certain physical constraints.  

 Why?: Car parts must be generated in a way to minimize pressure losses for better energy 

efficiency. Lesser the pressure loss, lower the power required to push the fluid through. 

TOPOLOGY OPTIMIZATION IN CFD 

Topology Optimization of an S-bend 

geometry, with left inlet and right outlet 

Body Fitted, Density and Level set 

methods for Topology Optimization 
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 Every face of the domain: At most 2 inlets or 1 outlet. 

 Inlets/Outlet chosen from the position set:  {2,5,9} on each wall. 

 Velocity inlet fixed to 1.0 on all inlets. 

 Zero pressure boundary condition on the outlet. 

 Gen AI Aim: Predict an optimal starting topology to guide the flow in a square domain 

DESIGN PROBLEM-2D 

Initial Domain (left) and Optimized Domain 

(right) 

Sample Test cases generated 

Inlet 

Inlet 

Outlet 



- 10 - Department | Date | Author  

 An ideal GAN has a Nash equilibrium established between G and D. 

 G becomes really good at predicting realistic samples, which D finds it considerably hard to classify from true 

samples.  

 Typically ordinary GANs suffer from mode collapse and training instabilities. 

 Solution: Wasserstein GANs  

 

  

GENERATIVE NETWORKS - GANS 

Vanilla GAN architecture 
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 Wasserstein GANs: Highly stable to train with no mode collapse. 

 New Loss: Wasserstein distance between fake image and actual training image distributions. 

  

GENERATIVE NETWORKS – CONDITIONAL WGANS-GP 

Conditional WGAN architecture 
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 Diffusion models are the state of the art for generating high resolution image samples. 

 Parametrized markov chains that gradually denoise gaussian noise to training samples. 

 Use a Deep Neural Network to predict noise required to progressively denoise a sample.  

GENERATIVE NETWORKS –  

DENOISING DIFFUSION PROBABILISTIC MODELS 

𝜀𝑡 = 𝜀𝜃(𝑥𝑡, 𝑡) 

Denoising Probabilistic Diffusion Models 
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 U-net model as the denoising network in the diffusion model. 

 To condition our diffusion model we use Classifier Free Diffusion. 

 During recursive sampling we then use both conditional and unconditional versions of the denoising network. 

  

GENERATIVE NETWORKS –  

CLASSIFIER FREE DIFFUSION MODELS 

U-net model 
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 Both networks highly successful in predicting visually accurate topologies on the test set. 

 Diffusion presented slightly better results than WGANs while taking more inference time ~3 times more 

inference time. 

GENERATIVE NETWORKS –  

TRAINING AND INFERENCE RESULTS 

WGANs, Diffusion  and Targets (left to right) 
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 To test our networks for prediction on 3D geometries, we extend our problem definition to 3D. 

 We now optimize a design domain of 64X64X64 cells, and compute flow optimal topologies in 

a cubical domain. 

DESIGN PROBLEM – 3D 

Initial domain (right) and optimal domain(left) Example training samples generated 
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GENERATIVE NETWORKS – LATENT DIFFUSION 

 Even reasonable voxel geometries (here 64X64X64) consume a 

lot of memory while training for reasonable batch sizes. 

 To counter this -> Diffusion on low resolution latents that are 

easy to store and train generated by an Encoder 

 Pass the denoised latents through a Decoder for super-

resolution. 
Stanford Voxel Bunny 

Latent Diffusion Models for 2D and 3D geometry generation 

https://www.researchgate.net/figure/Stanford-Bunny-14-Left-Point-cloud-representation-Right-Voxel-representation_fig1_342094393
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MAIN GOAL: PREDICTION OF OPTIMAL STARTING GEOMETRIES 

 

 

Starting 

Geometry 

(via Generative 

AI/ Topology 

Optimization) 
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 Another important objective of this work is to synthesize geometries that could provided for further analysis at 

BMW in form of CAD models.  

 Predicted geometries: Converted to mesh from voxel representations using Marching  Cubes, and then 

smoothened using multiple rounds of laplacian smoothing. 

POST PROCESSING 

Conversion of Voxel geometry to Mesh to Smooth Mesh 

Marching Cubes Laplacian Smoothing 
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 STL format was used to convert the obtained smoothened mesh representation to usable CAD surface 

geometry file..  

 Needed to seclude the inlet and outlet faces from the rest of the geometry to set boundary conditions. 

POST PROCESSING 

Conversion of Raw mesh to STL format STL format 
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 After setting up the boundary conditions, the geometries could then be simulated in StarCCM+, via a simple 

surface import and setting appropriate flow model and boundary conditions. 

POST PROCESSING 

Flow Streamlines on the generated geometry after successfully import in StarCCM  
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 This work shows that generative AI is highly capable of accelerating and providing geometries that obey 

design considerations. 

 This work directly produces STL format geometries that could be handed over for flow based analysis at 

BMW. 

 While Phiflow is highly customizable and fast, it still has limited capacity for topology optimization: 

 In future better optimization tools could be used to automate generation of variety of other test cases. 

 Next Step in Generative Design (smoother geometry generation):  

- Differentiable geometry generation : Representations like NURBS (Non Uniform Radial B-Spline) 

and Diffusion Maps 

- Faster ML inspired solvers to guide generation through physics 

 

CONCLUSION AND FUTURE WORK 
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